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The averaging principle, developed earlier [1 and 2] for Markov processes,
is applied for the analysls of a stationary process behavior of a one-dimen-
ﬁionalnconservative system, under the action of slight random noise of the
white” type and slight nonlinear friction.

In a number of publications the averaging principle was applied to Markov
processes. For example, in [3], a linear conservatlve system, under the
action of slight white nolse, was investigated. In [4] a similar system,
with friction, was studied under the assumption that the effect of noilse 1s
much smaller than the effect of friction. An arbitrary one-dlmensional con-
servative system was considered in the iuteresting monograph [5], under the
assumption, however, that the noise intensity is independent of the point of
phase space. In addition, 1n all these works, the rigorous proof of the
application of the averaging principle to random processes was not given,

In [6], a linear conservative system subjected to the actlon of a non-
linear friction and white noise, under varicus relations between friction and
noise, was investigated. 'The proof of the averaging method for such systems
was also given, based on [1 and 2]. In the present paper, the results of [6]
are generalized to the case of the one-dimensilonal conservative system of the
general type. In particular, the expression is obtained for the density
limit of the stationary probability distribution of the system investigated,
when the noise and friction tend to zero. A method 1s also indicated for the
determination of further terms of the asymptotic expansion.

1, The formulation of the problem., We shall consider a mechanlcal system
with one degree of freedom, the undisturbed motion of which is periodic and
described by Hamilton's function g(p,q).

Let the system be subjected to the action of slight frictlon and slight
random disturbances of the white noise type. If we assume that the effect
of the random disturbances and the work of the friction forces over the
period are of the same small orde of magnitude e , then the motion of such
a system is decrlbed by Equations

dg = [0H | 8p — efy (p, )l dt + V& [0y, (p, 9) d&; (2) -+ 035 (, g) 48 (1)]
dp = [— 0H | 3q 4- ef, (p, g)] dt + Ve log (2 9) d&; (1) 4 05 (2, 9) dEy (O] (1.1)
In the system (1.1), the functions €, (z) and ;3(t) are independent

Wiener random processes (integrals of "white noise") such that <§ (1)) = 0,
E2 () =1t (pointed brackets denote probability averaging)} the functions 7
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and ¢, denote, in general, a nonlinear friction in the system and the matrix
{(0,;{P,gq)) 1s the intensity of the random impulses at the point (p,g) of the
phase space. It 1s not difficult to show that over a time of the order 0(1),
the solution of the system (1.1) can be as close as desired to the solution
of the undisturbed system

¢ =0H/[dp, p = —0H/dq (1.2)

if e 1s sufficliently small. In particilar, the energy of the system will
not change significantly over thils time. However, the relaxation time for
the system (1.1) 1is of the order l/e . Therefore, we lnvestigate below the
behavlior of the system (1.1) over this perilod of time; in particular, we
determine the statlionary process of the behavior of the system.

2. The equation of energy change of the system, The functions £,(¢) do
not have a differential 1n the classical sense, however the system (1.1; can
be glven an exact meaning, 1f we understand it as a system of stochastic
differentlial equations of Jto [7 and 8].

As is known, the solution p, (), g, (t) of the system (1.1), satisfying the
initial conditlons X

Pe (0) = po, 2. (V) = go 2.1)

represents a random process in the phase space of the system. Applying Jto's
formula and changing variables in the stochastic integral [ 3], we can write
the equation of energy change E (1) = H (p, (1), ¢, (¢)) ©of the system (1.1).
This equation has the form

oH oH 1 02H o2 2H
dE. () = ¢ [— Toer @) 5 t1g 55 + 2 (au a7 T 20 jpp0 T an Gz )] dt +
- o0H oH oH oH
+ Vi (ou G+ ou e ) 2t @ + (on G+ 0u 5y ) ate 0] 2.2)

(255 = 0410;; + 045059)

We shall investigate Equation (2.2) together witr one of the equations of

the system (1.1). In the system obtained in such a manner the "fast” and

slow' motions are separated. For such systems (and for much more general
ones) the averaging principle 1s well known. This principle, in the absence
of chance (1.e. with 0;; = 0) was established in the works of Krylov, Bogo-
liubov and Mitropol'skii. This principle allows, over a period of time of
the order of 1/¢ , to approximate the equation of the slow motion with an
equation, the right side of which 1s averaged over the fast motion (the fast
motion in the present case coincldes with the motion of the undisturbed sys-
tem). The corresponding averaging principle, for systems contalning chance
of the type under consideration here, was developed by the author (see [1
and 2]). Applying it to the present case, we obtain, that the probability
distribution for the energy FE (f) of the system (1.1) over a time interval
of the order 1/e¢ with small ¢ 1s close to the probability distribution
for the one-dimensional Markov random process Eb(t): described by Equation

o* (Eyp)

4B () = gy [ E9) + F* (Eo) de - Ve e dt () 2.3

T (E) = @ (%%)_1 dq, £0*? (E) = § <[£{%—(2;M> dt =

oH )2 0H o6H o0H \2
=& @ |:(111 (?‘aq , -+ 2a12 -‘—aq -‘_‘6P + az (‘_—ap ) dt
. 1 H PH o H
PE = rapt e, F ) = §on G + 20 gy + om g | 1

( Th§ integration 1s carrled out over the path of the undisturbed motion
HP,Q =F .

From these equations, it can be seen that 7(&) 1s the period of the

Here
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undisturbed motion, corresponding to the energy £ , and o7 (£), ec™{(x)
and ¢F*(§) are the work of the friction forces,the local diffusion of the
process H (p (f), ¢, (f)) and the work of the additional friction forces, ori-
ginating from the diffusion, over the same path #(p,g) = £ .

Let us denote by u(g,t) the density of the probability distribution of

the process fg,{t) . It is known, that this density satisfies the equation
of Fokker-Plan&—Kolmogorov, which ir the present case has the form

O 1 8 [o*2(F) d u
o =¢ TW(W“)—W[U* (&) + F*(E) r—(/)‘] @4
If the initial distribution density is known
u{E, 0} = uy {F) 2.5)

then, solving Equation (2.4) with the initial condition (2.5), we can find
approximately the probability distribution for the energy of the system (1.1)
over the time interval  0(1 cg. The smaller ¢ , the more exact the appro-
ximation, The solution y,({#x) of Equation (2.4), independent of time, nor-
malized by condition b

g 1o (E) dE =1 (2.6)

0
gives the probabllity density of the stationary process (2.3), 1f it exists.

The function u,(#) is easily calculated. For this purpose we note, and
this is easy to prove, that the functions ¢* and F* are connected by the
relation

a 1 aa” adu
5o 0% = 2 (F% + D) (e =75 & F2e-T2a) e

Using (2.7), we obtain .

» %k — (I)
o () = eT (E) exp {2 S "i—-%)»;,;(z)—@ dz} @.8)

0
where the normalizing constant ¢ 1is found from (2.6), and it is assumed
that o*2 does not become zero, so that the process (2.3) is ergodic.

In the particular case &(F) = 0 .
7* (2)
o (E) = ¢T' (E) exp 2 %2 (2) @ dz (2.9}

0

The condition &(z) = O seems somewhat artificial, however it is satis-
fied in the important particular case, when H ==1/,p? /m + U (¢}, and the
random noise depends only on the position of the ¢-particle and effects
directly only the impulse of the system. The system {1.1) then becomes

au ,
dg= L-ar, dp= [., a7 1 et q)] i+ Veo(q) d (1) (2.10)

Since Uy = Oy = 0y = 0, and 0y, = 0 (¢) in this case, then g =0,
s = 6% (g} Therefore the condition #(r) = 0 1is satidfied.

3., The stationary state of the behavior of the system, OSince the coef-
ficients of the system (1.1) are independent of time, it 1s natural to expect
that, when ¢t - = , a definite limiting state is establlshed, if the general
assumptions of the friction in the system are fulfillled. It is of interest
to study this limiting state as ¢ ~ O ,

Let us state the problem more preclsely. Let,u“)(p,q) be the density on
the measure dp gg o©of the stationary probability distribution for the Mar-
kov process (l.li, i.e, such a function, that

SS pp, q1) P, (P, g, & Pr 90 dPrday = 1 (p, q), \Su(‘) (p pdpdg=1 B1
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Here P,(qu.t,pp ¢y 1s the probability density of the transition from
point (p,2) to point (P,,q,) 1in time ¢t for the process (1.1). We shall
find the limit of the function u"’(p,q) as ¢ - 0,

It 18 easy to show from Liouville's theorem, that the limit p“” @, g}, 1ir
it exists, actually depends only on one variable p((p o) = u© (H (p, g)).

Let the followlng conditlons be satlsfled:

a) with any ¢ > O there exists a stationary distribution for the pro-
cess &1.1;, the density of which p(ﬂ on the measure dp dg satisfies rela-
tion (3.1);

b) the distribution u*) "does not spread out" as ¢ = O , 1.e, for any
8§ there is a ¢ such that

1 (p, ¢) dpdg <8 (3.2)
H(p,q)>c

for all ¢ > O . Then, using argum?%ts agalogous to [6], it can be shown,
that a low 1imit of the function p'* Sf,q as € ~ O differs from the
stationary solution of the problem {2.%), (2.6) only by the multiplier

1/T(#), 1.e.
/ e 1O (p, q) = po (H (&, ) I T (H (p, 9))

The multiplier 1/7(y) arises from the fact that p® 1s the density on
the measure dp d¢ &nd p, is the density on the measure 4F .

Using (2.8), we obtain
H (p, q)
' ’iq f‘(Z)—‘D(z)d}
Z

B (p, g) = cexp {2 e (3.2)

This result enables us to calculate approximate values of the important
parameters of the process (1.1) for small values of ¢ . For example, the
average energy of vibration (EC> a8 ¢ - 0 tends to the 1limit

(Egy = ngo (E) dE

It is interesting to note, tyﬁt when condition #(r) = O 4is satisfied,
the extremes of the function pn'® (p, g) are reached on those trajectories of
the undisturbed motion g(p,g) = £, for which £, coincides with the roots

of Equation
¥ (Ey) = 0 3.4)

Equation (3.4) is the well known condition for the determination of the
spacing of the limit cycle in a system with slight friction, consisting in
the requirement, that the work of the friction forces during the limit cycle
should be equal to zero. Thus, the stable and unstable 1limit cycles of a
system without chance correspond to the maxima and minima of the density of
the lrivarlant measure for a system with white noise, if the condition
$(r) = 0O 1is satisfied.

Probably, the most practical case 1is the one, when the random,noise 1s
much smaller than the friction, 1.e. 4;<< 1. Let a;; (P, @) = W0y (P, 9)s where
< { is a parameter, describing the ratlo of the random noise work to the
ork of the friction forces over the period of the motlon. Then also
(E) = u@° (E), 0*2 (E) = uo°2 (E), where the functions Q° (E) and ©¢°2 (E) are
determined on g, " 1n the same way as & and g ° are determined on gy, .
It can be seen from (3.3), that when p<€1 the stationary distribution of
the process tends to the highest maximum of the function
{ ro
2
U (E) = So.oz (z) dz
0

1.e. to one of the limit cycles of the system without chance., If the func-
tion hes & number of maxima of equal helght, the case has also been analyzed
in detail (see [9]).

In conclusion, we shall make some comments:
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1) Conditions (a) and (b) in Section 3, are very important in the proof
of the above mentioned results. We can give sufficient conditions for their
satlsfaction in terms of Liapunov's functions, based on the results [10].

2} The method described here can also be applled to the analysis of
multi-dimensional systems. However for such systems there exlsts, as a rule,
more than one integral of motion. Therefore the "slow motion” will be here,
in general, multi-~dimensional, and the method presented will lead only to a
reduction in the dimensions of the problem. For example, the density limit
of the stationary distribution will depend not only on the energy, but also

on_all the other integrals of motion, and therefore explicit equations can
only be obtained as an exception.

3) The function }Jm is only the first term of the asymptotic expansion

”(E) (p’ q) =3 p(o)._i_ 8’.1-(1) + ene

~ Using another approach, analogous to the one suggested in [11], we can
also obtain the other terms of thls asymptotic expansion. In addition, it

is understood, the functions pﬂ) with n> 4 .will depend not only on the
energy.
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